







#### Feedstocks: Characteristics, Pre-Treatments

#### Gregg Williams Des Devlin



#### Inaugural Bio-Methane Regions Event Training the Trainers

26-27th May 2011 - University of Glamorgan, South Wales



wrop & Chymru: Buddsoddi yn eich Dyfodo Cronfa Datblygu Rhanbarthol Ewrop

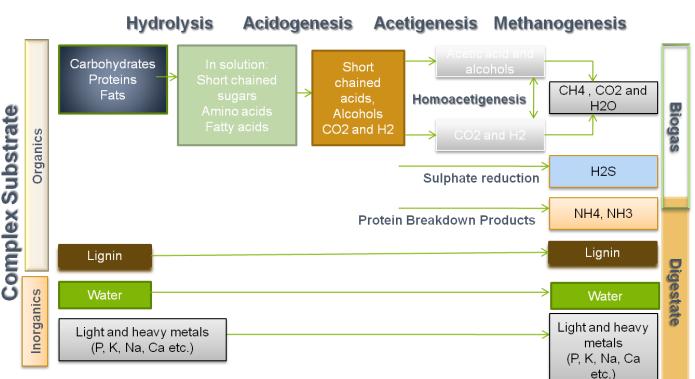
Europe & Wales: Investing in your Future European Regional Development Fund









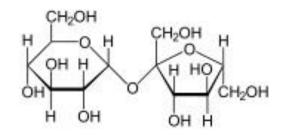

#### Overview

- Examples of feedstocks
- Feedstock characterisation
- Gas yields (Buswell equation)
- Anaerobic biodegradability testing
- pre-treatments
- examples (percolation, chemical pretreatment)



#### Feedstocks for AD

- •Maize
- •Wheat
- •Sugarbeet
- •Grass
- •Silage
- •Whey
- •Spent Grain
- •Paper
- •DAF
- •Agricultural Waste
- •Abattoir Waste
- Commercial Waste
- Municipal Wastes
- •Foodwaste
- •Chicken Litter
- •Cow / Pig Slurry
- Sewage Sludge




#### Molasses



Main components

soluble sugar



Total solids VS

50-60% >98% of TS

Methane yield

Availability

300 m<sup>3</sup> t<sup>-1</sup> TS

commodity £150 / t



University of Glamorgan Prifysgol Morgannwg



#### Energy crops

Main components



Total solids Volatile solids

Methane yield

Availability (Wales)

sugars, starch cellulose, hemicellulose

30 – 35% 90 – 98% of TS

300-400 m<sup>3</sup> t<sup>-1</sup> TS

10,000 ha @17-21 TS ha<sup>-1</sup> (maize) seasonal

HELP Helps Hel

Data compiled from; Charlton et al., 2009. Chem Eng Res Design 87:1147–1161 Welsh Assembly Government, 2007 <u>http://www.statswales.wales.gov.uk</u> Big East Biogas Handbook

University of Glamorgan



# Grass / silage



Main components

Total solids Volatile solids

Methane yield

Availability (Wales)

sugars, cellulose, hemicellulose

30-35% 90-98%

260-400 m<sup>3</sup> t<sup>-1</sup> TS

1,009,700 ha @ 10 t TS ha<sup>-1</sup>

£20 - 40 / tonne

University of Glamorgan Prifysgol Morgannwg



Data compiled from; http://www.statswales.wales.gov.uk Big East Biogas Handbook Value

### By-products (e.g. Wheatfeed)



Chemical

Water

Protein

composition

Carbohydrates = 85%

=15%

= 2%

(20% Starch , 65% holocellulose)

Physical properties of

Bulk density = 3.6 Kg L<sup>-1</sup>

cm

Weight =  $3 \pm 0.34$  g

 $D = 0.8 \pm 0.025$  cm

the wheatfeed

Dimensions

 $L = 2.1 \pm 0.2$ 

Main components

Total solids Volatile solids

Methane yield

Availability

starch, cellulose, fibre

85% 90-95 % of TS

320-400 m<sup>3</sup> t<sup>-1</sup> TS

31,200 t / year (from one local plant)

£165 / tonne

University of Glamorgan Prifysgol Morgannwg



| Hawkes et al., 2008 Bioresource Technology 99: 5020-5029 |
|----------------------------------------------------------|
| G. Shipley – personal communication                      |
| $\mathbf{O}$ . Onpicy – personal communication           |

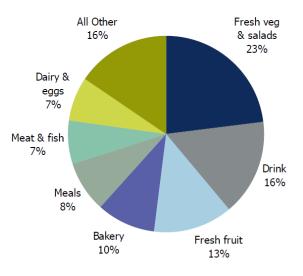
#### Wholesale as feed

#### sale as leeu

#### Municipal and C&I wastes

Main components - Vegetable peelings, bakery, teabags, meat, paper

Availability (Wales) 870,000 t / year


Methane yield

400 m<sup>3</sup> t<sup>-1</sup> TS

Gate fees / waste permits / ABPR / PAS110



Figure F: Proportion of weight of all food and drink waste, split by food group



Data amalgamated from: Environment Agency Wales C&I survey 2007 WRAP 2009 The composition of municipal solid waste in Wales http://www.statswales.wales.gov.uk Big East Biogas Handbook

#### Animal slurry / sewage



Components

Total solids Volatile solids

Availability

undigested material

5 -15% 70–85% TS

5,929,600 t slurry (18%) 96,000 t sewage sludge



Methane yield

180-200 m<sup>3</sup> t<sup>-1</sup> TS

Suitable for co-digestion

Waste regulations

PRITY OF PRITY OF ACRONATION

Data from: Renewable Energy Route Map for Wales Big East Biogas Handbook

University of Glamorgan Prifysgol Morgannwg

#### **Online compositional databases**



#### **Biomass Feedstock Composition and Property Database**

Return to main search page or close this window to return to the main Web site.

This page is dynamically generated. If you're using a specialized screen reader and having difficulty understanding the page content, please contact the webmaster for a verbal or written description.

| Samples     | Variety | / Extractives               | Ash                         | Total Lignin                | Total Lignin                  | 4                                     |
|-------------|---------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|---------------------------------------|
|             |         | ASTM E-1690-95              | ASTM E-1755-95              | ASTM E-1721-95 and T-250    | ASTM E-1721-95 and LAP-004    |                                       |
|             |         | percent mass                | percent mass                | percent mass                | percent mass                  |                                       |
| Switchgrass | Alamo   | 16.99                       | 5.76                        | 17.56                       |                               |                                       |
| Samples     | Variety | Acid-Insoluble Lignin       | Acid Soluble Lignin         | Acetic acid                 | Uronic acids                  | i i i i i i i i i i i i i i i i i i i |
|             |         | ASTM E-1721-95              | LAP-004                     | LAP-017                     | Scott 1979                    |                                       |
|             |         | percent mass                | percent mass                | percent mass                | percent mass                  |                                       |
| Switchgrass | Alamo   |                             |                             |                             | 1.17                          |                                       |
| Samples     | Variety | / Arabinan                  | Xylan                       | Mannan                      | Galactan                      |                                       |
|             |         | ASTM E-1821-96 or E-1758-95 | ASTM E-1821-96 or E-1758-95 | ASTM E-1821-96 or E-1758-95 | 5 ASTM E-1821-96 or E-1758-95 |                                       |
|             |         | percent mass                | percent mass                | percent mass                | percent mass                  |                                       |
|             |         | 2.75                        | 20.42                       | .29                         | .92                           |                                       |
| e           |         |                             |                             |                             |                               | 😜 Internet 🛛 🖓 🕶 🔍 100%               |
|             |         |                             |                             |                             |                               |                                       |

| 🖉 Biomass datapage Phyllis - Windows Internet Explorer                    |                                                                                                                           |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| G ⊖ ▼ 👹 http://www. <b>ecn.nl</b> /phyllis/dataTable.asp                  | V 🗟 😽 X 🦉 Live Search 🖉                                                                                                   |
| 🖕 Favorites 🛛 🚖 🏉 Suggested Sites 🔻 🖉 Web Slice Gallery 👻                 |                                                                                                                           |
| Biomass datapage Phyllis                                                  | 🏠 🔻 🔝 🐇 🖃 🖓 🖓 Tools 🕶 🔞 👻 р                                                                                               |
| ECN PHYLL<br>the composition of biomass of                                | IS                                                                                                                        |
| General information                                                       | definitions used in Phyllis   preferences<br>of a group of materials   selection via NTA 8003   search for materials<br>□ |
| Sample information Group RDF and MSW                                      |                                                                                                                           |
| Subgroup MSW                                                              |                                                                                                                           |
| Material MSW                                                              |                                                                                                                           |
| ID-number 1518                                                            |                                                                                                                           |
|                                                                           | omass/sewage sludge and coals; Clean Coal Technology Programme 1992-1994, Stuttgart, IVD, ISBN 3-928123-16-5 (1994).      |
| Remarks: MSW from Germany                                                 |                                                                                                                           |
| Material composition Proximate analysis (wt. %) Ultimate analysis (wt. %) |                                                                                                                           |
|                                                                           | Elemental analysis (mg/kg sample (dry))                                                                                   |
| dry daf ar dry daf ar                                                     | AL - ND Fe - ND Pb - ND                                                                                                   |
| Ash 44.2 27.2 C 30.8 55.1 18.9 Msr                                        | As - ND Hg - ND Sb - ND                                                                                                   |
| Water 38.5 H 0.96 1.7 0.6 Msr                                             | B - ND K - ND Se - ND                                                                                                     |
| Volatiles O 21.5 38.5 13.2 Msr                                            | Ba - ND Mg - ND Si - ND                                                                                                   |
| N 1.09 1.95 0.67 Msr                                                      | Ca - ND Mn - ND Sn - ND                                                                                                   |
| Calorific value (kJ/kg) S 0.78 1.4 0.48 Msr                               |                                                                                                                           |
| ione<br><b>Hy start</b> 2 Microsoft • 🔨 Feedstocks 🤨                      |                                                                                                                           |
| 🛃 start 📄 🕝 2 Microsoft 🝷 🔮 Feedstocks 🦉                                  | Presentation 1 🔮 ENEAworksh 🔀 Microsoft Exc 🔂 part2_Biogas 🤌 8 Internet 🔹 🗈 ENEAworksh EN Search Desktop 🖉 🏈 🧭 🕺 13:30    |



|                                                                 | ₹ view data - Cropgen - crop BMPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ = X                     |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 竺 🕼 Home                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | @ _ = ×                   |
| Clipboard                                                       | Image: Solution of the second sec |                           |
| Read-Only This d                                                | database has been opened read-only. You can only change data in linked tables. To make design changes, save a copy of the database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                         |
| material<br>name Alemangrass 6A<br>N.A.<br>substrate characteri | part growth stage N.A. N.M Cropgen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| DM content N.M<br>VS content N.M<br>Ash content N.M             | N content       N.M       lignin content       N.M       pre treatment       None         C content       N.M       hemicellulose content       N.M       storage       N.M         CN ratio       N.M       cellulose content       N.M       other       N.M         particle size       Standard procedure head 0.8 mm       other       N.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| type Batch<br>mixing N.M                                        | volume     100 ml     temp     35 oC     other       working volume     N.M     HRT     N.A.     other       test duration     46 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≡                         |
| input amounts<br>sludge N.M<br>substrate 2g.VS/I<br>water N.M   | innoculur     N.M       source     Anaerobic digester treating domestic sewage sludge (primary)     nutrients       TS     N.M     innoculum / substrate ratio       VS     N.M     2/1 VS basis       other     N.M       VS     N.M       Other     N.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| BMP<br>m² CH4 por tonno uu<br>Record: I4 1 of 729               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 🦺 start 🔰 💽                                                     | 🦻 2 Microsoft Off 🔹 🔞 3 Microsoft Offi 🔹 🔀 Microsoft Excel 🔂 part2_Biogastrai 🧭 9 Internet Expl 🔹 🎦 CROPGEN_D4 🌈 Cropgen - crop B EN Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h Desktop 🔎 🔇 🐼 🔎 K 13:39 |



#### Feedstock Characterisation - Why

- To ensure the correct treatment option is chosen
- To make sure the plant runs smoothly
- Correctly size plants
- Assess feedstock variability
- Need for dilution, additional nutrients/chemicals
- Potential odour and gas cleanup problems
- Quality of the resulting digestate



### Feedstock Characterisation -Sampling

- Care should be taken
- Representative sample is essential
- Fresh is best
- Think about volume/mass required
- Sub sampling techniques



### Feedstock Characterisation -Sampling



Sample as received



 $1^{st}$  stage homogenisation – chopping using food processor



Large contaminants removed (bones, string, plastic, large paper, metal)



2<sup>nd</sup> stage homogenisation – blending using food liquidiser



University of Glamorgan Prifysgol Morgannwg

#### Feedstock Characterisation - Units

- Wet Chemistry
- g/l, g/kg, g/%TS
- g/% VS, kg/m<sup>3</sup>, kg/ton

- Gas Production
- Biogas or methane?
- ml/l, ml/g VS Added
- ml/g VS Destroyed
- m<sup>3</sup>/tonne material added



University of Glamorgan

### Feedstock Characterisation – Basic Parameters

- TS
- VS
- pH

- Temperature
- Alkalinity
- HRT
- Gas production
- Gas Composition



University of Glamorgan Prifysgol Morgannwg

### Feedstock Characterisation – Chemical Analysis

- COD Chemical oxygen demand
- Ammonia
- Carbohydrate
- Lipid
- Protein
- VFA volatile fatty acids
- NDF neutral detergent fibre
- ADF Acid detergent fibre
- Lignin

- Nutrients and trace metals
- Elemental Analysis (CHNSO)
- Pathogen
- Siloxane content
- Inhibitory Compounds or elements



#### Feedstock Characterisation – Chemical Analysis

| Type of<br>feedstock       | Organic content                    | C:N<br>ratio | DM<br>% | VS<br>% of<br>DM | Biogas yield<br>m <sup>3</sup> *kg <sup>-1</sup> VS | Unwanted physical<br>impurities                          | Other unwanted matters                                |
|----------------------------|------------------------------------|--------------|---------|------------------|-----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| Pig slurry                 | Carbohydrates,<br>proteins, lipids | 3-10         | 3-8     | 70-80            | 0,25-0,50                                           | Wood shavings,<br>bristles, water, sand,<br>cords, straw | Antibiotics,<br>disinfectants                         |
| Cattle slurry              | Carbohydrates,<br>proteins, lipids | 6-20         | 5-12    | 80               | 0,20-0,30                                           | Bristles, soil, water,<br>straw, wood                    | Antibiotics,<br>disinfectants, NH4 <sup>+</sup>       |
| Poultry slurry             | Carbohydrates,<br>proteins, lipids | 3-10         | 10-30   | 80               | 0,35-0,60                                           | grit, sand, feathers                                     | Antibiotics,<br>Disinfectants,<br>NH4 <sup>+</sup> ,  |
| Stomach/intestine content  | Carbohydrates,<br>proteins, lipids | 3-5          | 15      | 80               | 0,40-0,68                                           | Animal tissues                                           | Antibiotics,<br>disinfectants                         |
| Whey                       | 75-80% lactose<br>20-25% protein   | -            | 8-12    | 90               | 0,35-0,80                                           | Transportation<br>impurities                             |                                                       |
| Concentrated<br>whey       | 75-80% lactose<br>20-25% protein   | -            | 20-25   | 90               | 0,80-0,95                                           | Transportation<br>impurities                             |                                                       |
| Flotation sludge           | 65-70% proteins<br>30-35%lipids    | -            |         |                  |                                                     | Animal tissues                                           | Heavy metals,<br>disinfectants,<br>organic pollutants |
| Ferment. slops             | Carbohydrates                      | 4-10         | 1-5     | 80-95            | 0,35-0,78                                           | Non-degradable fruit<br>remains                          |                                                       |
| Straw                      | Carbohydrates,<br>lipids           | 80-<br>100   | 70-90   | 80-90            | 0,15-0,35                                           | Sand, grit                                               |                                                       |
| Garden wastes              |                                    | 100-<br>150  | 60-70   | 90               | 0,20-0,50                                           | Soil, cellulosic<br>components                           | Pesticides                                            |
| Grass                      |                                    | 12-25        | 20-25   | 90               | 0,55                                                | Grit                                                     | Pesticides                                            |
| Grass silage               |                                    | 10-25        | 15-25   | 90               | 0,56                                                | Grit                                                     |                                                       |
| Fruit wastes               |                                    | 35           | 15-20   | 75               | 0,25-0,50                                           |                                                          |                                                       |
| Fish oil                   | 30-50% lipids                      | -            |         |                  |                                                     |                                                          |                                                       |
| Soya<br>oil/margarine      | 90% vegetable oil                  | -            |         |                  |                                                     |                                                          |                                                       |
| Alcohol                    | 40% alcohol                        | -            |         |                  |                                                     |                                                          |                                                       |
| Food remains               |                                    |              | 10      | 80               | 0,50-0,60                                           | Bones, plastic                                           | Disinfectants                                         |
| Organic<br>household waste |                                    |              |         |                  |                                                     | Plastic, metal, stones,<br>wood, glass                   | Heavy metals,<br>organic pollutants                   |
| Sewage sludge              |                                    |              |         |                  |                                                     |                                                          | Heavy metals,<br>organic pollutants                   |

AL Seadi (2001)

University of Glamorgan



### Feedstock Characterisation – Buswell Equation

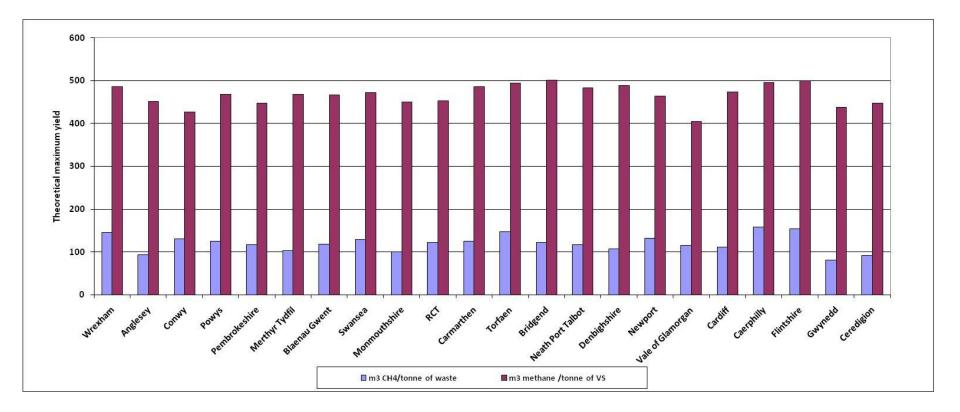
•Theoretical maximal biogas and biomethane production

 $C_{c}H_{h}O_{o}N_{n}S_{s} + \left(c - \frac{h}{4} - \frac{o}{2} + \frac{3n}{4} + \frac{s}{2}\right)H_{2}O \rightarrow \left(\frac{c}{2} + \frac{h}{8} - \frac{o}{4} - \frac{3n}{8} - \frac{s}{4}\right)CH_{4} + \left(\frac{c}{2} - \frac{h}{8} + \frac{o}{4} + \frac{3n}{8} + \frac{s}{4}\right)CO_{2} + nNH_{3} + sH_{2}S$ 

Does not take into account the solubility of gasses
Assumes all VS is available for conversion into biogas
Does not account for any inhibition

•Useful as a guide

University of Glamorgan Prifysgol Morgannwg




### Feedstock Characterisation – Buswell Equation





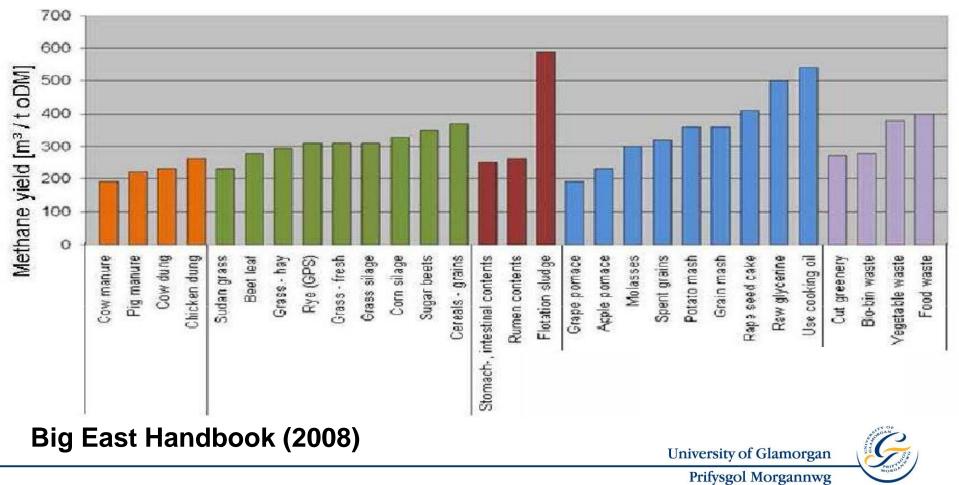
### Feedstock Characterisation – Buswell Equation



University of Glamorgan Prifysgol Morgannwg



### Feedstock Characterisation – Other Estimations


| Substrate    | Biogas (NI/kg TS) | CH4%  |
|--------------|-------------------|-------|
| Carbohydrate | 700-720           | 70-71 |
| Lipid        | 1200-1430         | 67-70 |
| Protein      | 790-830           | 50    |
| COD          | 545-660           | 55    |



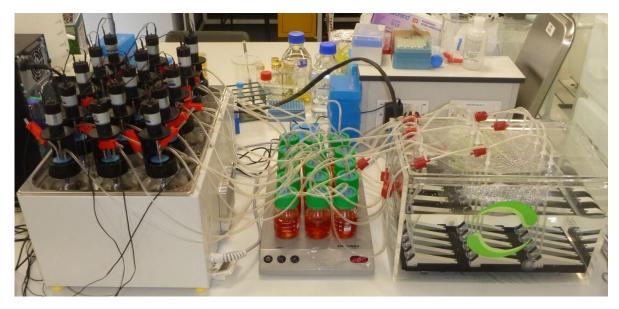


### Feedstock Characterisation – Other Estimations

#### From the literature



#### Batch

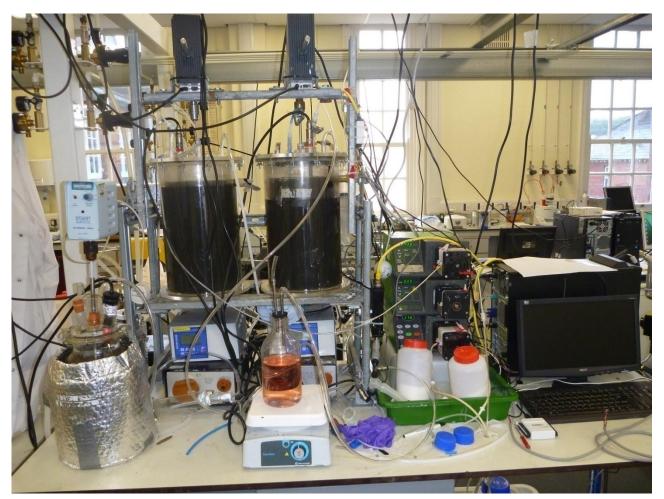

- Relativly heap
- Relatively fast 30 days
- Small scale so more tests can be carried out
- Standardisation is debated i.e. Seed to substrate ratio
- Provides details on maximum biogas and or biomethane production
- Not representative of the full scale process

#### Continuous

- Expensive
- At least Four HRT's required
- In depth gas analysis can be carried out (e.g.Siloxanes, sulphur compoounds)
- Produces representative digestate, liquours and gas production as full scale plants
- Dewatering can be evaluated








#### Oxitop Batch Reactor

Automated Methane Potential Test System (AMPTS) Batch Reactor



University of Glamorgan Prifysgol Morgannwg



#### Custom Built 10 I batch Reactor University of Glamorgan





Three Semi Continuous Reactors University of Glamorgan





#### Semi Continuous Reactor

University of Glamorgan





#### **Continuous Reactor**

University of Glamorgan

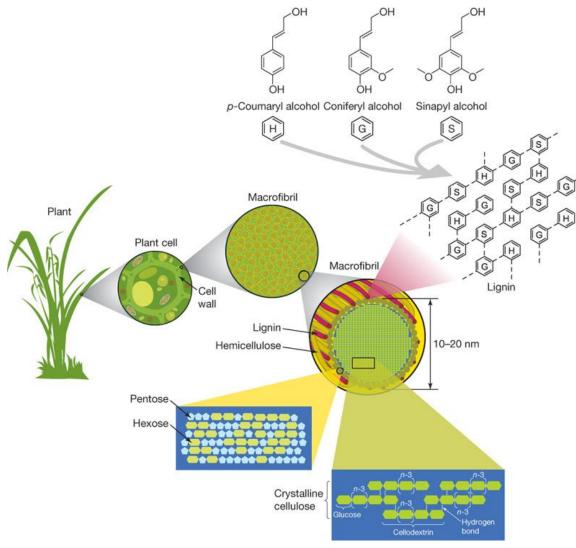


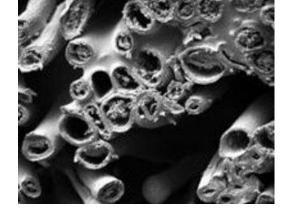
#### Mechanical pretreatment

eview of Food Waste epackaging Equipment

- Screens
- Depackaging
- Hammer mills
- Trommel sieves / communiting drums
- Rotating drum pulverisers
- Air classifiers
- Magnetic separators
- Hydro-pulpers / separators
- Degritter
- Homogenization






University of Glamorgan Prifysgol Morgannwg



#### Ligno-cellulosic feedstocks





EM Rubin Nature 454, 841-845 (2008) doi:10.1038/nature07190



University of Glamorgan Prifysgol Morgannwg

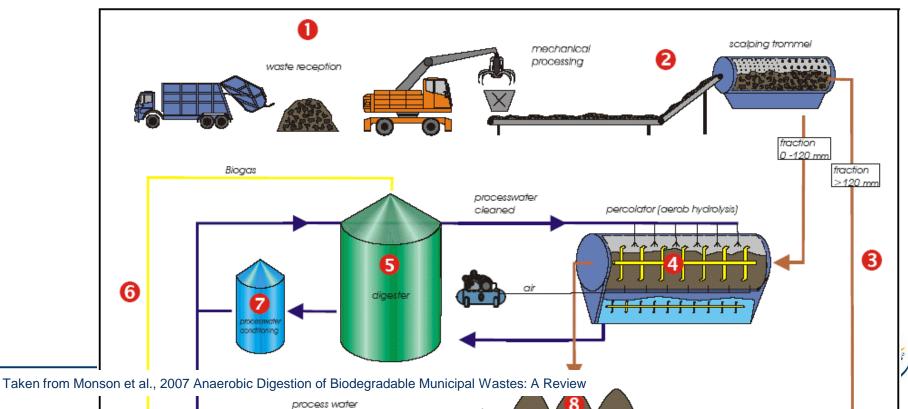
#### Pretreatment methods

| Pretreatment                          | Mode of action (in addition to in-<br>creasing the surface area)                                                   | Potential<br>sugar<br>yield | Inhibitor<br>formation | Residue<br>formation | Need for re-<br>cycling<br>chemicals | Low in-<br>vestment<br>costs | Low opera-<br>tional<br>costs | Applicable<br>to various<br>biomass | Proven<br>at pilot<br>scale | Additional re-<br>marks                                                    |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|----------------------|--------------------------------------|------------------------------|-------------------------------|-------------------------------------|-----------------------------|----------------------------------------------------------------------------|
| Mechanical                            |                                                                                                                    |                             | ++                     | ++                   | ++                                   | +                            | -                             | +                                   | +                           |                                                                            |
| Liquid hot wa-<br>ter                 | Removal of hemicellulose                                                                                           | ++                          | -                      | ++                   | ++                                   | +                            |                               |                                     | ++                          | ,                                                                          |
| Weak acid                             | Removal of hemicellulose (major)     Alteration lignin structure (minor)                                           | ++                          | -                      | -                    | -                                    | +/-                          | +                             | +                                   | ++                          | Specially suitable<br>for biomass with<br>low lignin content               |
| Strong acid                           | Hydrolysis of cellulose and hemi-<br>cellulose                                                                     | ++                          | -                      | -                    | -                                    | -                            | +/-                           | ++                                  | ++                          | Strong acid is<br>hazardous, toxic<br>and corrosive.                       |
| Alkaline                              | <ul> <li>Removal of lignin (major) and<br/>hemicellulose (minor)</li> </ul>                                        | ++                          | ++                     | -                    | -                                    | ++                           |                               | +/-                                 | +/-                         |                                                                            |
| Organosolv                            | <ul> <li>Removal of lignin (major)</li> <li>Removal of hemicellulose (minor), depending on solvent used</li> </ul> | ++                          | ++                     | +                    | -                                    | -                            | -                             | +                                   | ++                          | High quality lignin<br>Solvent used may<br>be inhibitor for<br>cell growth |
| Wet oxidation                         | Removal of lignin (major)     Dissolve hemicelluloses     Decrystallization cellulose                              | +/-                         | ++                     | +                    | ++                                   | +                            |                               |                                     | -                           |                                                                            |
| Steam explo-<br>sion                  | Removal hemicellulose (major)     Alteration lignin structure (minor)                                              | +                           | -                      | +                    | ++                                   | +                            | +                             | +/-                                 | ++                          | Low environ-<br>mental impact                                              |
| AFEX                                  | Removal of lignin (major) and<br>hemicellulose (minor)     Decrystallization cellulose                             | ++                          | ++                     |                      | -                                    |                              |                               | -                                   |                             | No need for small<br>particle size for<br>efficacy                         |
| CO <sub>2</sub> explosion             | Removal of hemicellulose     Decrystallization cellulose                                                           | +                           | +                      | ++                   | ++                                   | -                            |                               |                                     | -                           | More cost effec-<br>tive than AFEX                                         |
| Combined me-<br>chanical/<br>alkaline | Removal of lignin (major) and<br>hemicellulose (minor)                                                             | ++                          | ++                     | -                    | -                                    | +/-                          | +/-                           | +                                   | +                           |                                                                            |

+ = positive characteristic: E.g. high yield of fermentable sugars, no or low fermentation inhibitors, no residue formation, no or low need for recycling of chemicals, low investment costs, high applicability to different biomass types, proven at pilot scale, low operational costs

- = negative characteristic: E.g. low yield of fermentable sugars, high amount of fermentation inhibitors, high residue formation, need for recycling of chemicals, high in vestment costs, low applicability to different biomass types, not (yet) proven at pilot scale, high operational costs






University of Glamorgan

#### OFMSW - MBT (ISKA GmbH)

Buchen 165,000 tpa Heilbronn MBT, 88 tpa Physical sorting / separation >120 mm fraction to percolation -> AD <120 mm fraction to compost

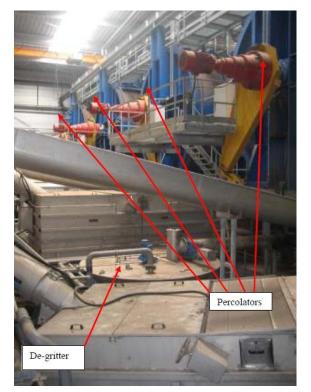




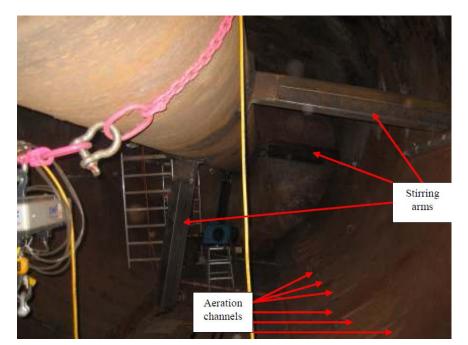







#### **ISKA GmbH**

University of Glamorgan Prifysgol Morgannwg



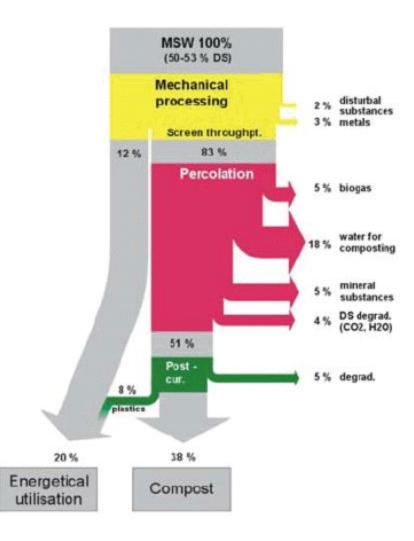

Taken from Monson et al., 2007 Anaerobic Digestion of Biodegradable Municipal Wastes: A Review

#### **ISKA GmbH**














Taken from Monson et al., 2007 Anaerobic Digestion of Biodegradable Municipal Wastes: A Review

#### Percolation



OFMSW < 120mm continuously fed through system with stirring

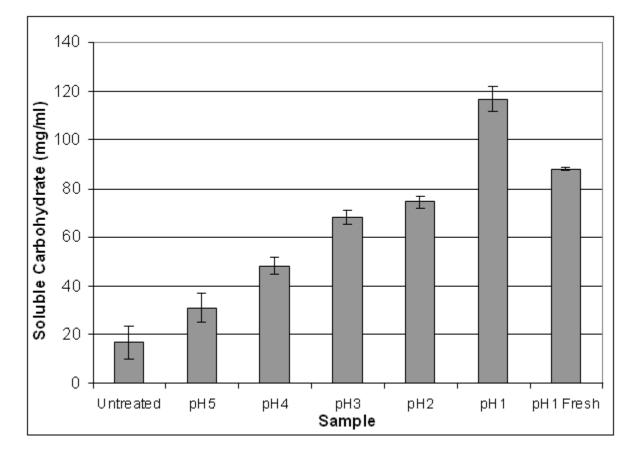
Hot water added from top

3 days residence at 38°C,

Degritting

Screw press to separate solids

Percolate liquor COD 200-250 kg/t

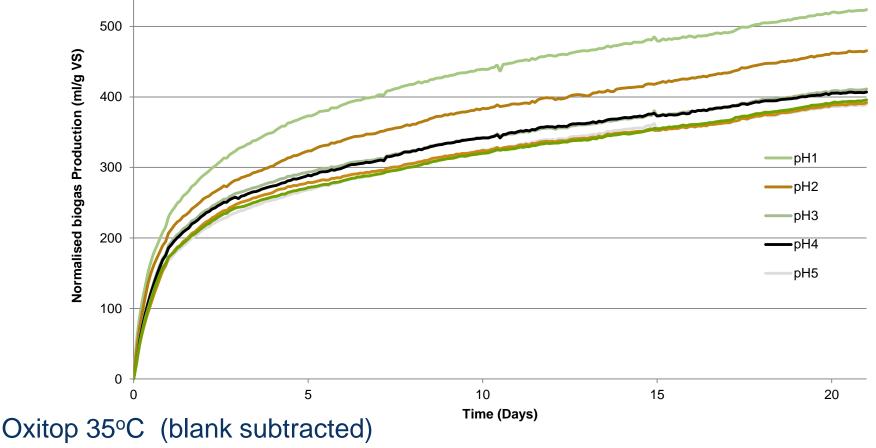

5% mass conversion to biogas

Water recycling from digestate

University of Glamorgan



#### Acid pre-treatment of SAS




5 % TS SAS acidified with conc HCI for 24 hrs then neutralised with NaOH.

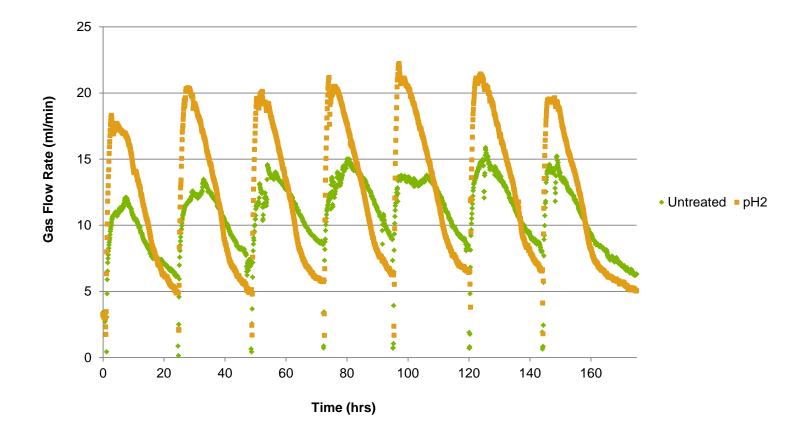




# Gas production after acid pretreatment of secondary sewage sludge



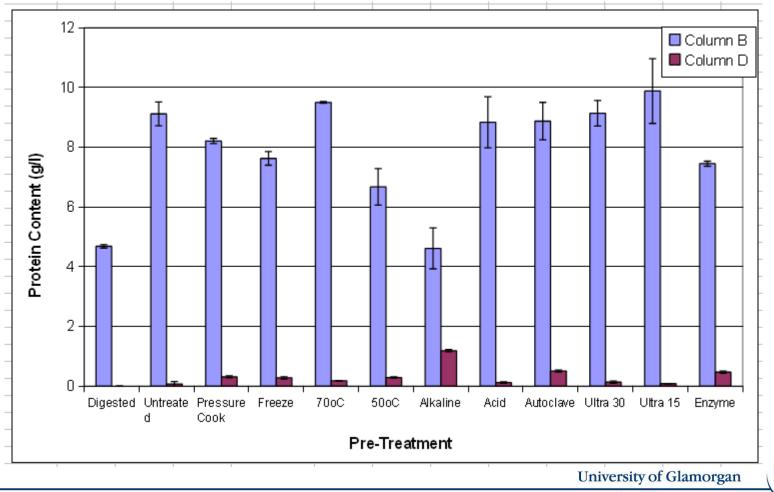
100 ml inoculum 0.4 g VS substrate Topped up to 150 ml with Dl water


University of Glamorgan

Prifysgol Morgannwg

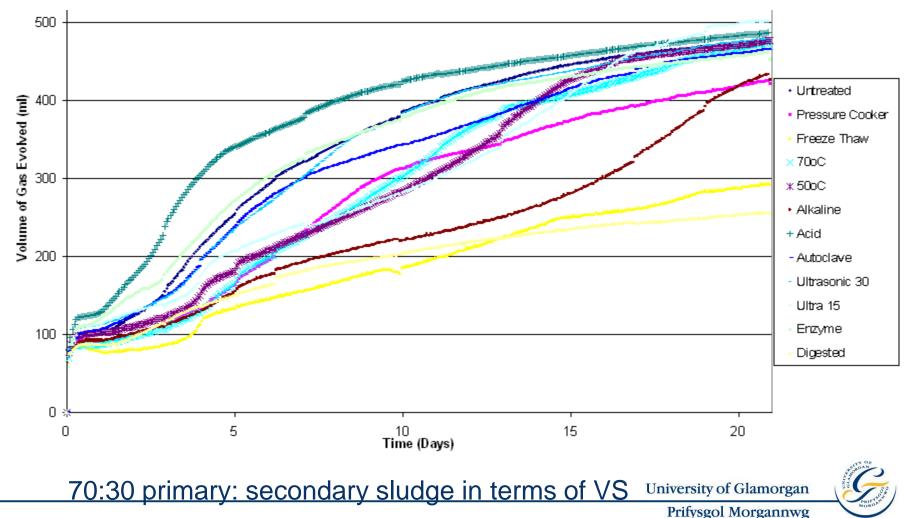
Devlin et al (2011)



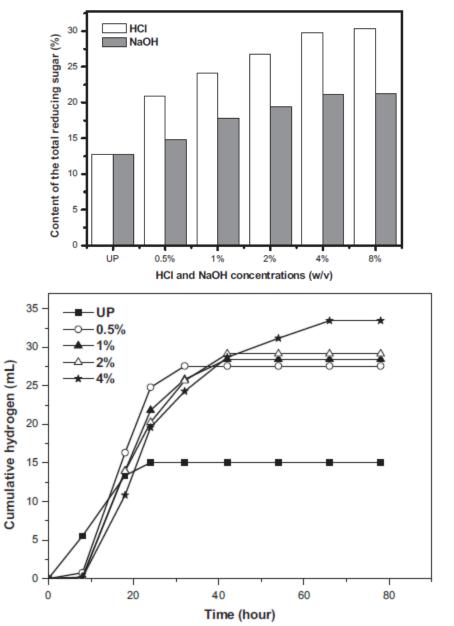

#### Semi-continuous feeding acid pre-treated secondary sewage sludge



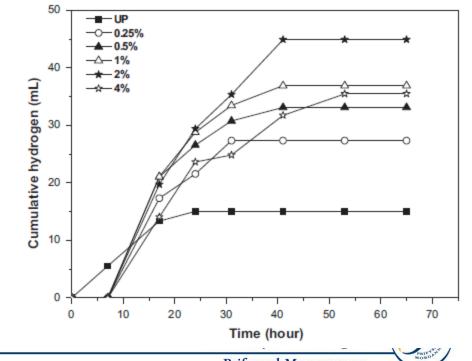
12 day HRT, 35°C




# Effect of pretreatments on solubilisation of protein







# Effect of various pretreatments on gas production



#### Acid / Alkali pretreatment of poplar



#### Enzymatic pretreatment of poplar



Taken from; Cui et al., 2010 Int. J. Hydrogen Energy 35:4041-4047

#### Conclusions

- A wide variety of materials can be used as feedstocks for AD.
- Consider availability, cost, handling and storage requirements, composition and biodegradability.
- Proximate analysis and chemical analysis is useful in ensuring the plant is operating efficiently.
- The Buswell equation theoretical energy yield.
- Digestability testing to confirm gas yields.
- Pretreatments can aid processing and enhances gas production.











# Thank You

# Questions



" The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein."



University of Glamorgan



#### References

Al Seadi, T. (2001). Good practice in quality management of AD residues from biogas production. Report made for the International Energy Agency, Task 24- Energy from Biological Conversion of Organic Waste. Published by IEA Bioenergy and AEA Technology Environment, Oxfordshire, United Kingdom.

Big East Handbook (2008). Biogas Training Handbook, available http://www.big-east.eu/bulgaria/bulgaria.html

Charlton A., Elias R., Fish S., Fowler P. and Gallagher J. (2009) The biorefining opportunities in Wales: Understanding the scope for building a sustainable, biorenewable economy using plant biomass. *Chem Eng Res Design* 87:1147–1161

Cui M., Yuan Z., Zhi X., Wei L. and Shen J. (2010) Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. International Journal of hydrogen energy **35**, 4041 – 4047.

**Davidson J. (2008)** Renewable Energy Route Map for Wales. Consultation on way forward to a leaner, greener and cleaner Wales. Welsh Assembly Government Report. Available at:

http://wales.gov.uk/docs/desh/publications/110503consultationrenewableenergyroutemapen.pdf

**Devlin, DC. Esteves, SRR. Dinsdale, RM and Guwy, AJ. (2011).** The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. *Bioresource Technology*, 102(5), 4076-4082.

**Esteves SRR and Devlin DC (2010).** Food Waste Chemical Analysis. WRAP Report, available <a href="http://www.wrapcymru.org.uk/about\_wrap\_cymru/compositional\_report.html]#">http://www.wrapcymru.org.uk/about\_wrap\_cymru/compositional\_report.html]#</a>

Harmsen, P.; Huijgen, W.J.J.; Bermudez, L.; Bakker, R. (2010) Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass. ECN Biomass, Coal and Environmental Research Report ECN-E--10-013. Available at: <u>http://www.ecn.nl/docs/library/report/2010/e10013.pdf</u>

Hawkes F R, Forsey H, Premier G C, Dinsdale R M, Hawkes D L, Guwy A J, Maddy J, Cherryman S, Shine J and Auty D.
(2008) Fermentative Hydrogen Production from a Wheat Flour Industry Co-product. Bioresource Technol. *Bioresource Technology* 99, 5020–5029.

**Monson, K.D., Esteves, S.R., Guwy, A.J and Dinsdale, R.M.** (2007). Anaerobic Digestion of Biodegradable Municipal Wastes: A Review. University of Glamorgan, Pontypridd, Wales. ISBN 978-1-84054-157-1.

Rubin EM (2008) Genomics of cellulosic biofuels Nature 454, 841-845

Scholes P., Areikin E. and Davey A. (2009) Survey of Industrial & Commercial Waste Arisings

in Wales. Environment Agency Wales Report. Available at http://www.environment-

agency.gov.uk/static/documents/Research/Survey of Industrial and Commercial Waste Arisings in Wales 2007.pdf

WastesWork and AEA (2009) The composition of municipal solid waste in Wales, WRAP Report, available http://www.wrapcymru.org.uk/about\_wrap\_cymru/compositional\_report.html University of Glamorgan

